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I
INTRODUCTION AND SUMMARY

This study, funded under Contract N00014-87-0784, 'considers some

scattering problems relevant to the analysis of brightness temperatures and

scattering cross sections of sea ice and its snow cover. It is a continu-

ation of work performed at Aerojet ElectroSystems Company under previous

contracts with the Office of Naval Research. The theme of these studies

3 has been the application of strong fluctuation theory to the description of

the microwave radiometric properties of random media such as sea ice and

I snow.3
These past studies have demonstrated the applicability of the bilocal

3 approximation to the equations of stro:'1 fluctuation theory in calculating

electromagnetic material properties of random media such as effective di-

Ielectric constants [1], [2]. The resulting equations have received con-

3firmation from numerous experiments (see (3], [41 for measurements on snow

and the discussion in (2] for experimental data on sea ice). To the pre-

3 sent time, these are the only published equations accounting for the order

of magnitude increase in the dielectric loss experienced by snow at fre-

I quencies above 20 GHz as compared to its low frequency value.

The bilocal approximation has also been used in conjunction with the

3distorted Born approximation in calculating the brightness temperature of
snow [3] and sea ice [5]. The distorted Born approximation, which uses

3 only the mean electric field within the random medium to evaluate scat-

tering and thermal emission into the air above, has had some success in

iiII
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3 explaining measurements of the brightness temperature of snow at fre-

quencies below 37 GHz, young and first year ice at frequencies up to at

least 140 GHz, and old sea ice at frequencies into the 20 GHz range. Its

3 use in conjunction with strong fluctuation theory has led to results con-

siderably superior to that found by the application of radiative transfer

theory. However, for media such as snow and old sea ice, the distorted

Born approximation leads to predictions of emissivities and brightness

temperature which are considerably higher than observed values at suffi-

3 ciently high frequencies. The reason for this behavior is suspected to lie

in the neglect of scattering by the random, or incoherent, field within the

medium when calculating the emissivity and scattering coefficients.

It is the purpose ol'the work /eported here to examine~how tti-i, here-

tofore neglected contribution of the incoherent field to the emissivity and

scattering cross sections of a random medium may be taken into account.

There--aro two main technical problems are solved. In Section II,

-strong fluctuation theory equations are derived for the second moments of

3 the electric field in an anisotropic medium. Previous work in this area

had not considered anisotropy in the random medium so that it was not clear

what form the second moment equations would take in the case of a general

I random medium such as sea ice, where anisotropy may occur. Nor was the

most useful explicit equation written for the isotropic case. The analysis

3 is dependent on obtaining equations which allow the elimination of the aux-

iliary field E, which always arises in strong fluctuation theory, in faver

of the electric field F, which is easy to work with when electromagnetic

U
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boundary conditions are applied and which has a more direct physical

meaning than F.
I -

Section III of this report makes use of aparticular equation derived

in Section II astIthe basis for a detailed reduction of the second moment

equation to a form which is practical for numerical computation. The

problem of a layered medium with a spherically symmatric correlation func-

tion is considered. The spherical symmetry of the correlation function

3 implies that a scalar description of the dielectric properties of the

medium is valid and results in the elimination of several technical

3 problems which would arise had an anisotropic correlation function been

assumed. Thus, the theory is applicable to snow cover on sea ice as well

3 as old sea ice (provided that the correlation functions describing brine

pockets in the ice is spherically symmetric as is suggested by some

studies) but will not be directly applicable to young and first year ice

3 which are anisotropic. However the development of the theory is general

enough to allow complex vertical variations in the mean dielectric profile

3 of the medium so that it may be applied to realistic layered structures

found in naturally occurring snow and ice. Particular care is taken to

identify and treat all singular behavior which could cause problems in a

3 numerical solution.

3 The equations developed in Section III have not yet been programmed

for solution on a digital computer. In view of the expectation, based on

good physical arguments, that the use of these equations will greatly

I
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3 extend the high frequency range of validity of strong fluctuation theory

over the distorted Born approximation for strongly scattering media, it is

recommended that the next phase of these studies be devoted to writing a

3 FORTRAN program to solve these equations. There also exists the possi-

bility that one of the integrations involved in solving these equations may

3 be performed analytically, thus substantially decreasing the complexity of

the proposed computer program. Hence, an additional analytic effort in

this area would be well worthwhile. It is further recommended that the

3 computer program that is written be applied to examining the brightness

temperature behavior of an isothermal, dry snow pack at microwave fre-

3 quencies where the distorted Born approximation begins to fail. Compa-

risons with experimental data should be made. There is sufficient experi-

I mental data available to make such comparisons enlightening. It should

i also be useful to see what these new equations predict for the brightness

temperature of old sea ice (at a uniform temrerature) assuming that the

3 applicable brine pocket correlation function is spherically symmetric.

The effect of snow cover, which usually occurs on the ice, should also be

I studied.

I
I
I
I
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* STRONG FLUCTUATION THEORY EQUATIONS FOR ELECTRIC

FIELD SECOND MOMENTS IN ANISOTROPIC MEDIA

i
I. INTRODUCTION

Strong fluctuation theory for random media ((l1-[5]) has found

application to numerous interesting geophysical problems. In [6], it was

I shown how the equations for the mean electric field in the bilocal approxi-

mation and the random field in the distorted Born approximation could be

formulated directly in terms of the electric field instead of in terms of

equations containing an auxiliary field F (see [1]-[41, [6)). Brekhovskikh

[7] has shown how equations for electric field second moments could also be

obtained in strong fluctuation theory in the case where the fluctuations in

the random medium have a spherically symmetric correlation function and

hence lead to a scalar rather than a second rank tensor description of the

quantity ([i]-[6]) which is used to describe the fluctuations of the medium

in strong fluctuation theory. In this communication, the equations for the

second moments are generalized to the case of an anisotropic medium.

I II. SECOND MOMENT EQUATIONS

The electric field E(r) in a random medium described by a random

second rank dielectric tensor Kr is governed by the equationi
(L 0+A L) E = 0 (1)

where L +AL is the operator VX VX - k 2Kr and k is the free space
0 0 0

i 1-2
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I
propagation constant. In strong fluctuation theory a non-random quasi-

static dielectric tensor K is introduced in terms of which the operators

L and AL are given by

I( 2 2 2

(L ) a -6. .17 - k 2(K ) (2)
0 ij Zx iax 0 011 3

AL= k 2(K -K ) (3)0 0i
The quasi-static dielectric tensor is 4efined by means of the equation'I

< > -0 (4)

3 where the angular brackets denote expected value and

i AL[1+SAL -1  (5)

I Here, all second rank tensors are represented by matrices and multipli-

cation indicates matrix multiplication. The matrix S in (5) is defined as

the coefficient of the delta function in the Green's function r determined

by (2) which may be expressed as

i f(r, r') - S6 (r-r') + PV''(r,r') (6)

i
In this equation, PV means that the principal value is to be taken in

i
i

1-3I
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integrals in which F' appears. With these definitions, an auxiliary field

I = fl+s.'JL E (7)

3 is introduced in strong fluctuation theory. It has the property that it

satisfies an integral equation whose kernel is free of delta functions,

U namely

IE = G F (8)

where G is the operator whose kernel is PVf'. Equations(5) and (7) show

that

I = ALE (9)

while (7) and (9) show that

I
F ( E + S (10)I or

E = [1- S ] 9 1

In the following derivation of the second moment equations, the

3 arguments of the various quantities involved will be abbreviated to

subscripts. Thus, e.g., the notation

<E !* > - <E (r ) E*(r )> (12)
'. 2 - -2

is introduced where* indicates complex conjugate and the juxtaposition

* of two vectors is simply the matrix representing the direct product of the

vectors. Following (7], it is convenient to define the operators ; and B

1
3 1-4
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by the equations

I <F< >1 1 t2 (13)

<F F *> = <F F *> (14)
2 1 -2 -1 2 -2I

<F F *> = <F S * * F > (15)I3-1i -2 -1i 2  a2  -2>

I
B <F 1F 2*> = <ag F, a * F2 > (16)

UB <(F F *>= < S F **>(17)
1 1I -2 1 a 1 2* F*

IB 2<F 1F 2*> = < 91F 1 a * F 2*> (18)

Equations (15), (17), and (18) are additional definitions that are required

i compared with [7] because S does not commute with the fields in general.

For the special case of a spherically symmetric correlation function forI r
and scalar K (and hence scalar K ), S is simply the scalar (81

S - -1/(3 k 0K 0 (19)

and may be removed from the angular brackets in these equations.

The operators , and B allow a relation between <F1 F *> and <EI E2 >

In n lI II2 -1i I2
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I
to be established. A calculation using (7), (9) and (11) yields

-i -2 11 -2 1 l1 El 2* g2 " ' 2" s l I [-S 2* 2" IF2"

+ S I F * (20)

Uwhich has the consequence
<F F2 * >  - - I I + SI B2 <E 2 > (21)

I
Now (9) and (1) show thatI

l £1 2" £2 A'LE1 AL2 * £2"

= L 0 l L2* E2E (22)

Iso that, using (16) and(21), the equation

IL o* - B(l- - S 4 5 1 B) E < > =0 (23)
1 3 1 <El >(

is found. Here Lo2* is defined as

I A L2) £ (24)
(L o2*)ijkt <~j 2*>kj 6ik (L o2 jX<1E2 *> k-

1-6
I
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where the summation convention is used for repeated subscripts. Another

interesting equation is obtained from the pair of equations,I
s * = Ll E s2 LL * E (25)

1 l 2 2 1-i S2 2 -2

3 t, F E2 * = AL El F *LI [E2* + S2 * L 2 * E.2*] (26)

3 which follows from (17) and (9). Subtracting (25) from (26), using (1), and

taking expected values yields

L <El 12*> + [1l - < 2*> - 0 (27)

Of course, the substitution of (21) in (27) yields an equation containing

<E1 E2*> alone. The equations (again following from (7) and (9))

S 1 l* 2*= SL El * L2* 2" (28)

F * F* = F AL * E2* =[E + SIA* E* (29)
E (27 2 1- 2 - 1 L 2

yield an equation analogous to (27):

Lo2* <*E 1E2*> + 2- 1 < F2*> 0 (30)

3 III. APPROXIMATIONS

Equations (23), (27), and (30) are exact. If, as in [6], quadratic

1-7

I ,i



Report 9316

and higher order terms in and B are ignored, then the equations

L lLo*- B <11 E *>= 0 (31)

L Iol + I- B2 1 <El E2 *> = 0 (32)

IA
2 B1 < .2*> = (33)

are found. Allowing for slight differences in notation, eq (32) reduces to

that given in [7] (written for a vanishing external current density) if the

medium is isotropic so that (19) may be used.

A slightly different version of (31) is useful in problems where the

mean field <E> has already been calculated and an expression for the inco-

herent contribution to <E E2 *> is needed. That is, if the field is

written as

IE - <E> + E r (34)

where Er is the random part of E, then < 1 r ,r*> is to be found. Perhaps

the easiest way to derive the desired equation is to note that, according

to (61, El satisfies

E r -L -1 IF -< F>L (35)

1-8
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I
exactly. Then

<Elr Er*> L.-l A l < F *>- > (36)

l 2 o 02 <1-2 1 i 21 2* (36

I Now, for large separations r1-r2 , (16) shows that B <F F *>

<gI Fl> <g2" F*> so that the bracketed quantity in (36) vanishes. On the

other hand, for small to moderate values of r1 -r2 , the first term in the

bracket dominates. Thus, if it is assumed that the field at a point is

only slightly dependent on the fluctuation at that point, (16) yields

where

12 ijk < 1 ik (92*)j8

I is the 4th rank covariance tensor for the random tensors 9 and Since

(38) vanishes for large rl-r 2 , a reasonable approximation to the bracket in

(36) is simply (37). Further, since higher order terms are already

ignored in (31), < F !*> in (37) may be replaced by <E1 E*>. Thus

-1 -l -L <E E2*>

lr .> L o02 12 (-9

Upon noting that (34) yields

I
<E1  2 *> - < E >1 < E > + < r 4r*> (40)

>l 2 +-1 2

1-9

I



Report 9316

I
U (35) may be replaced by

L * C123 < El E2> = C12 <E> <E (41)

Either (39) or (41) represent a suitable formulation for practical compu-

3 tation.

i
I
i
i
I
i
I
i
I

I
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SECTION 2

STRONG FLUCTUATION THEORY CALCULATION

OF SCATTERED FIELDS FROM MULTI-LAYERED RANDOM MEDIA
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i
I
i
i
I
I
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i STRONG FLUCTUATION THEORY CALCULATION OF SCATTERED

FIELDS FROM MULTI-LAYERED RANDOM MEDIAi
I. INTRODUCTIONU

The theory of electromagnetic scattering and microwave thermal

emission from random media such as snow, sea ice, and vegetation has become

an important area of research. One approach to studying this problem has

been strong fluctuation theory [11, [21 which has been applied to calcu-

lating effective dielectric constants [31 of snow and sea ice [4]-[6] (with

strong experimental support [7]), scattering cross sections of vegetation

[8], [9] and snow [101, and the microwave brightness temperature of dry and

wet snow [3]. In applications to scattering and brightness temperature

calculations, the distorted Born approximation has been used in the past.

* This approximation neglects scattering of the incoherent field and results

in an underestimate of the true scattering by the medium. Its effect is

i particularly noticeable at higher frequencies.i
It is the purpose of this work to improve upon the distorted Born

approximation in strong fluctuation theory. Integral equations are

developed for the second moments of the incoherent electric field in the

i case of a multi-layered random medium, each of whose layers is bounded by

plane surfaces. It is shown how the solution of these equations is incor-

porated into the expression for the bistatic scattering cross section of

the medium. Of course, by use of the results of Peake [111, these

scattering cross sections may be used to calculate the thermal emissivity

I of the medium if it is at a uniform temperature.

2-2
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I II. BISTATIC SCATTERING COEFFICIENTS

I Consider a layered medium, as is illustrated in Fig. 1, that has a

random scalar dielectric constant K r(r) dependent on the point r for z<0.

It is assumed that the expected value of Kr is a function of z only and that

the covariance function of Kr is spherically symmetric (i.e. a function of

the magnitude of the separation of two points only). Further, assume that

changes in the expected value of Kr over a correlation length are small

(except, of course, at possible boundaries where discontinuities of the

dielectric properties arise).I
Suppose that the medium is illuminated by an incident plane wave

in =E 0 
Ao exp[ik - r] (1)

I where

k = ko(sin ,O,-cos 8) (2)

A

and p is a unit polarization vector which will be taken to be either hori-

zontal (h) or vertical (v):

I
h = (0,-i,0)I -o

Ao or (3)

v (cose ,O,sinO (

I
i 2-3
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We are interested in the scattered power contained in a small solid single

about an arbitrary propagation vector

I0 (sin ecosO,sin~sin6,cos6) (4)

The electric field which is generated by the wave (1) may be expressed

as

E - Em+ Er (5)

where E m is the mean wave and Er the random, or incoherent part. Using the

bilocal approximation of strong fluctuation theory, Em satisfies the equa-

tion [12]

I Ho_<9GE> Ema= 0 (6)

where LO is the operatorI
L- VxVx- k 2 if z>O (7)

VxVx - ko2K ° if z<0

I
and G is the non-delta function part of the dyadic Green's function r (r,r')

for (7). Here, angular brackets are used to denote expected values and K is

the quasistatic dielectric constant of the medium and is defined by the

I
! 2-4
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equation

I<> = 0 (8)

where I = L~l+SAL] -  (9)

and

AL - k 2 (K -Kr (10)
0 0

= 2

In (9), S- -1/(3k2 K o) is the coefficient of the delta function part of r0 0

The second moment dyad of the incoherent field satisfies the equation [13]

i
r r*3 3

< E r r )> f d r,r" )

where

'(jt-r")= < (r' )E*(r')> (12)

is spherically symmetric according to the assumptions made above. Here *

indicates complex conjugate, and 'indicates adjoint. Notice that (5) implies

that

<E(r)E (r Km) E r *(r) + <E r(r)E r*(r)> (13)

When this is used in the right hand side of (11), it is seen that (11) is an

integral equation for <Er(r I ) E
r * ( r

IThe bistatic scattering coefficients defined in (11] require the

decomposition of the left hand side of (11), evaluated at r = r - r, into an
1 ~2

2-5
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I angular spectrum. Namely, the components of (11) are written as

<Ei r(r)E r*(r)>=dO<E5(t)Er*(,)> (14)i
where dQ is an element of solid angle about the vector k and the integral is

i taken over the upper hemisphere. In (14), E (k) denotes the Fourier

transform of E (r). The scattering coefficients are

Yb(ko k)= (4Tccos os )b b.<Er(k)Er*(k)> (15)
Yab os-0 0 1

where a and b denote unit vectors describing the polarization of the incident

Aand scattered waves respectively. We will be concerned with the case where a

is given by (3) and b represents horizontal or vertical polarization for the

propagation vector (4):

A A~ = h= (sinO,-cosO,O)

or (16)I A
X- (-cosecosO,-cosesinO,sin6)

I
The computation of Em for a layered medium of the type aeing con-

sidered here has been considered in detail previously (51, (141. These works
also provide detailed expressions for <Er r, in the distorted Born

approximation which is obtained by neglecting the term <Er (L )r* (r")> when

(13) is substituted into the right hand side of (11). The task here is to

i
I 2-6
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I
retain this term in (11). Thus, write (15) as

BI1b k)=, I )+bY (k k) (17)
Ib B

where Y represents the distorted Born approximation contribution to Y and

ab ab

may be considered to be known. The contribution of the incoherent field Y

arises from the second term on the right hand side of (13) when substituted

into the right hand side of (11) and yields, using the notation for the two

dimensional Fourier transform of the Green's function developed in (14],

abo'- ' [io1 A0uk

Y I' k)- [k 6cos6/(Trcos i b b dz' [ dz" A (z',k k )ob - -o c 0 ik X, y ( 8- ( 18 )

A* (z" ,k ,k )F (k k z',z"
ie x y kk y, y,

where the dyad F is the two dimensional Fourier transform

F(k kc z' z")=Jdxdy '1 -r 1 e p i x+ik ybzE r (r ) ( ' > (19)
= y , y , L 'jr-rj Xpy k

and the summation convention is used for repeated Latin letter subscripts.

In (19), in addition to the z',z" dependence, the expected value on the right

I hand side is a function of x= x'-x" and y- y'-y" because of the horizontal

i translational invariance of the problem under consideration.

Considerable simplification in further calculations may be achieved if

use is made of an additional symmetry of the problem. Notice that the
I m m.

driving term in (11) is Em m which, in turn, is determined by the incident

wave term E (r )E *(r ) arising from (2). But, for either horizontal or
-in '1 ~'in '-2

vertical polarization, this dyad is invariant under reflections in the x, z

* 2-7
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I
plane. The geometry illustrated in Fig. I as well as the expected value of

I the fluctuations is also invariant under this reflection. Hence, so is

<E (r )E (!2)>. But this implies that the (x,y), (y,x), (y,z) and (z,y)

components vanish. Hence, we may write, in matrix notation,

I
fell 0 e (20)rI

<E (r1 )E (r )>= 0 e22

-2 \e 02 (03/

From (19), an identical symmetry holds for F.

I
With this information, a routine calculation following that described

A A
in [14] shows that, for b= h (see (16)), (18) reduces to

I b 20 0
Sah= kb 0 O/(icos o) dz' fdz"A,(z'Ie)A (z"I,)-

[sin F (z ,")+cOS (z' (21)
11 S 22 (''"

A A
while for b = v

YI = k 6 /(VTcos dz' dz"
av o L

I * 2 2lZ,%
A0p(z',B)A*p(z",)[cos2F (z' ,z")+sin 2 (z',z")] (22)

I
I+CoO[App (z',O)A* (Z", e)F13(z' ,z")+A (z',q) A* (z", O)F (z' z'9]

13pz 13 31

+ A (z', e)A (z",)F ( z")
PZ PZ 33 '

2-8
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U The k dependence of all quantities in the integrands of (21) and (22) has

been suppressed for simplicity. Eqs (21) and (22), in conjunction with the

known Yab' provide a complete description of the scattering coefficients

(17). It is interesting to observe that (21) and (22) yield non-vanishing

cross polarized returns in the special case of backscattering 6 = e 0=T.

I Of course, the distorted Born approximation does not lead to cross-polarized

backscatter cross sections.

An approximation which is very useful in simplifying later calcula-

tions will be introduced here. For a sharply peaked correlation function C'

in (19), the expected value may be removed from the integrand to yield

hr (kx kyZ',Z')2Ek (z')W'(z',z",kx ky) (23)

I where, from (20),

E (z')= e (rr') (24)
kk k

and

W'(z',z",k k ) dxdy C'(ix,yJ,z-z'J)exp[ik x+ik y] (25)x, y L _iIx y

I
Notice that translational invariance in the horizontal direction implies that

E U does not depend on x' or y'.

i Equations (21)-(25) define the incoherent wave contribution to the

scattering cross sections. The quantities A00, APP, etc. have been dis-

cussed in [5] and [14]. However E k(Z') must still be calculated z'<O.

This will be discussed in the next sedtion.

2-9I
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I
III INTEGRAL EQUATIONS FOR THE INCOHERENT FIELD SECOND MOMENT

The second moment dyad is governed by (11) where the driving term is

the (assumed) known quantity E (Li)E (r 2) exhibited in (13). This equation

will be reduced to a form which is more suitable for computational work.

The principal tool in this reduction is the representation and properties of

the Green's dyad discussed in Appendix A.

When eq. (A-i) is substituted into (11), several delta functions arise

i which can iimediately be used to reduce the number of integrals to be

performed. It is found that

<E >- (27T dzz dd1A (z, ', &, T)F(&,n,z',z")A'(z",

-2E0 Cr )E .= Cr )> (21r)2{dz 2

exp[i (x -x )+il(y -y2)] (26)

where F is defined in (19). If the correlation function C' is assumed to be

sharply peaked, then eqs. (23)-(25) will be applicable for use in com-

puting Y . But this implies that the solution of (26) will be of interest
ab

i only for r - r - r. Thus
-1 ~ 2 -

I E(z)- (27)-2fdz' dz"d~dnW'(z',z",,n)a' (z, z',.,n)<EE*>(z')6' t (z,z",C,n) (27)

I
where the components of E are defined by (24) and, according to (13),I

i <E*>(Z)= ( (28)

2-10I
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I

Notice that the first term on the right hand side of (28) is actually a
m

function of z' only because E depends on the horizontal coordinates only

I Ithrough a factor of the form exp[ik sin Ox'](see [14]).
0 0Io

A further reduction of (27) arises from the observation that eq (A-2)

shows that the angular dependence of A' occurs as a simple factors of

powers of coso and sins if cylindrical coordinates (p,O) are introduced by

means of the equations

I~ -= coso

I 9= Osins (29)

Since the correlation function C' was assumed to be spherically symmetric,

(25) implies that the ,n dependence of W' (z' , is simply a depen-

dence on the parameter p only. Performing the integration in (28),

recalling the symmetry for E given in (20), and using (A-2) results in the

equation

0 *

Ell=f dl E> +Q I E >2 2 +Q EE =J>z+dQ'>W+ >}

1011 12 22 13E 33

E dz dz"f dpW IQ <E <E + <EE >(0
221 ** (30)

22) 12 f 11 + 11" >22 + 13 33fI :40oI m

E 33= dz' djp 3 E >u+ Q 3EE*>22+ Q 3EE>33

dz'dz I  OW' P <EE > + P <EE*>I 3El3J 13 2 1

E 'E*I31 13

2-11
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I
I

where

IQzz'z) (47T) [a(zz')ao*(zz")+ao~,tiz,z')a*(z,z"!J-Q

Q p12 (z,z',z")= (z, ) aop(z, -ao( z•

Q 13(zz',z")= (47) apz(zz')apz(z•z")

Q3 1 (z,z',z'"= (41T)1 a (zz')a*(zz") (31)

31 ,P *

Q3(z,z',z")= (27) -a (z,z' )a* (z,z")

33 ZZ zz

P (z,z',z)rn (4Tr) lfa,,(z,z)+apz,zI) a z,z")

IZ ZZ

P (z,z',z' (47) apz(z,z )apz(zz")

I The dependence of all quantities in (31) on the parameter P has been

suppressed in the notation.

l At this point, it is useful to introduce a variable change in the

integrals occurring in (30). Notice that, according to our assumptions,

W' decreases very rapidly as a function of the magnitude of z'-z" and is

nearly zero over a distance beyond a few correlation lengths. On the other

hand, the z' and z" dependence of the remaining terms in the integrands do not

I
I

2-12I
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I

3 change much over a correlation length. Thus, the change of variables

(compare with [5])

z1

UI= Z -Z (32)

I
will be made. With the above assumptions concerning W', we indicate the

argument dependence of W' as W'(1u;zl, p) where the z1 dependence is slow so

that, over distances of a few correlation lengths (Jul not too large).

1 (ul +u,0)=w I (33)

i*
Likewise, <EE > does not change much over a correlation length so that it may

be considered to be a function of z alone in the integrands. Following the

procedure in (5] and using these assumptions allows (30) to be approxi-

mated as

E 11 m dz 1 l I <EE >I11+  D 2 <E E  > 22 +  b E > 33

=dz <EE> + b<EE > +2b <EE*>

L 11 11 22 Pz 33

I1 0E <EE > + b <EE > +2b <EEE33 11 zp 22 zz 3

* 13

l3 J.i2 < 13 >13 PZZP 13

I I 2-13
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* where

D = 3/4[bop+b# J+ l/4b;)

D = 1/4[ bpp +bo | (35)n12 b -bo( I

D 13 =l/ 2 [Cppzz +C4zzI

n Here

-1 0~ o ,
bus(z,z)= (271) u I dl )acs (zl) am* (Zl+U) (36)

where the subscripts (a8) are one of the pairs ( PP ), ) (zz), (Pz) or

(zp) and Re means "real part". The first argument, z, in the components of the

I Green's dyad is suppressed for simplicity . In (35),

b1 (z,z I )= (2iR) RePdpfdu W'[ap (z)a#* (zl+u)+a# (z)aop (z,+u)

II
Also

0
CP zz l (27- Pdc du W'[ a zZ)a* (z +U)+azZ)az(z 1 +u)] (3E)

and

c (zzl )= (2n)- w[az(z )a (z +u)+a (z +u)a (zl)] '(39)
UGZZ t 1 zz 1 1 zzI

where the subscript a is either P or 0 •

I
Equations (34 -(39) are a set of integral equations for E when Em F

is specified. However, they are not quite satisfactory for numerical studies

I
i 2-14
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I
for two reasons. First, according to Appendix A, the terms in the kernels

containing azz have an explicit delta function part which should be treated

I separately in numerical work. Second, the asymptotic expressions for large

* values of the parameter P given in Appendix A show that special steps must be

taken in order to avoid numerical difficulties in evaluating the integrals in

(36)-(39).

I The explicit delta function contribution from terms containing azz is

easy to treat and results in an explicit evaluation of the integrals over zI

in eqs (34). Details are given in Appendix B. The second problem concerning

large values of the parameter p is treated by writing all integrals over p as

= dp +p do  (40)

i where the limit P is chosen large enough so that the components of the

Green's dyad show an exponential decrease. A reasonable choice is

i % = kda (Re°) (41)

I where the maximum is over the range of z where the medium is random. The

asymptotic expressions developed in Appendix A may be used as an approxi-

mation in the second integral in (40). This allows an explicit evaluation of

3 the integrals over z in (34) for largep when the order of integrations is

reversed so that the integral over (p ,=) is last. The details are found in[1
Appendix C.

I
2-15I



I Report 9316

I
I

Of course, the solution of eqs (34) requires the specification of the

correlation function C'or, equivalently, its transform W'. We will write

equations under the assumption that C' is an exponential function (it will be

obvious how to modify the following results for a single exponential if a sum

I of exponentials is assumed instead):

C'( r-r 1 )= <1t1 >exp[-Ir-r,j/z] (42)

where <1t1 > is defined by (9) and (12) for r'= r". Then W'(Iul;z) is

I
w'. <1g1 >v(lul p) (43)

I where

1V (2nt )p- 3(1+plu I]exp[-pl u ] 44)

I and

P= [1+9, 2PI 19 (45)

IThe slow dependence of W' indicated by its second argument allows the possi-
bility that <IgI2> and/or X may be a function of z. With these equations,

I all remaining integrals over P in the interval (p1,0) may be evaluated com-

pletely as is shown in Appendix D.

2-16
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I Upon using the results in Appendices B, C, and D in eqs (34), it is

found that the first three equations of the set (34) may be written asI0
* <EE**

E11+m<EE > 11+ m2 22 f 1 M11<EE >11+M2<EE >22+fp2<EE >33IC I o,** i

*m<EE) m <EE dz M <EE*>i+ M<EE +f <EE4

m2<EE> + EE <EE > (46)
2 22 22+ 1 22J> 1I 12 11 1.1 22 PZ 33In 0

+i<EE*> dlf <EE*>, -f (<EE*>22 M33 <EE*>333 3 iia1~ p 1 zp 2 33 33

where

M 11(z,z 1 4P) +3/4f# +1/4fpo

M12(z'Z 1 1/4[fzz +)=-fp (47)

M (Z,Z )= 2f
33 1 zz

Here the subscripted functions f are identical to the subscripted functions b

defined in (36) and (37) except for the fact that the upper limit in the

integration over Pin (36) and (37) is replaced by P (see eq (41)) and azz is

replaced by a 22 (see Appendix B) wherever it occurs. The multiplyingzz

factors ml ,m2 , and m 3 are given by

I I <9 > -3F (X )/(32k0 
4 IK 0 (Z) 1 J]-3 iP 3 (2 1)/32

In

2 1 0.(1X)Re[l/Ko(z,]/[16k ]

m 2= <1t1 2>-FIIP 2(Zl/3X'~~~ -t F 3 (tP1)/32

-Z 2 F 1(X1)ReZ.i%0"]l ]  (48)

I 2-17
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I

2>Cell 2 (Zl -2]/[ 4 k O f iK(Z) + dRefduw'( I u z)

I
[2a (z,z+u)+aF(z- kK*ZJ

c2I (,zu+ci (z,z-uJ/[ k 2 * (z)]p
ZZ zz 0 0

Here the functions F , F , and F are defined in Appendix D.
1 2 3

All of the functions in (46)-(48) are smooth enough so that no numerical

difficulties should result in the solution of (46).I
In the same way, the last equation in the set (34) becomes

E +n<EE*> = dz N <EE*> + 1/2 gpzz <EE*>* (49)
13 13 1 13 13 13

where

N 1 3= 1/21,ZZ +g ),] (50)

I and the subscripted g's are identical to the c's in (38) and (39) except

that the upper limit in the p integration is replaced by P1 and a is1 zz
cl

replaced by a . The multiplying factor n in (49) is

I zn- 7<jg12>/(8k2-+ (Zp)./Cko2o Z 211+2 R? 1 FoX /*()(1

+ap0 (z,z -u)+a (Z,' Z-u)

I
2-18U
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I
The integral equations (46) and (49) determine the second moment dyad

E. It is interesting to observe that (49) is not coupled to (46) so that the

off-diagonal components of E may be determined independently of its diagonal

elements. Also, notice that if the incident wave polarization is h0 (see eq

(31), then Em in (28), will have only an h component [14]. Thus, the
- 0

driving term ih (49) will vanish and the off-diagonal elements of E will be

zero when the incident polarization is horizontal. On the other hand, all

three diagonal elements of E will, in general, be non-zero when (46) is

solved for either horizontally or vertically polarized incident waves.I

i IV. CONCLUSIONSI
A system of integral equations in one independent variable has been

derived for the second moment dyad of the incoherent field. This system is

well suited for numerical work because all singular behavior has been

extracted from the integrands. The kernels in these equations are, at

present, expressed as double integrals (see (47) and (50) together with (36-

(39)). However, a preliminary examination of parts of these kernels has

shown that one of the integrations(the integral over u) may be done

analytically if the techniques discussed in [14] are followed. Thus, the

numerical work will be simplified even further provided that the remaining

i parts of the kernels can be treated similarly.

The theory developed here has shown that a calculationally practical

scheme for extending strong fluctuation theory beyond the distorted Born

I approximation for scattering problems is feasible.

2-19
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I
* APPENDIX A. GREEN'S FUNCTIONS

I In Section II, it was shown that the Green's dyad F for the operator

(7) was required in order to determine the second moment of the incoherent

field within the random medium. As in [14], it proves to be useful to

represent r as a two dimensional Fourier integral. The discussion in (14]

shows thatI
I(r,r')= (21T d d A'(z,z',9,rq)exp i[(Lx')4riy-y')j

(A-1)

where

a00+(9 2) )(ppp-a4)(g2a

(A-2)

I(a (p/o2 (app-a)+2 a) (9/p)apz

(g/P)aszp (T/I 1)a zP azz !
A' 2 22

I

Here p = 92+1 2 and app, a, etc. are functions of z, z , andp . Sub-

I stitution of (Al) and (A2) into L rf= 6(r-r) shows, after some manipu-

lation, that the following ordinary differential equations are satisfied by

the components of the Green's dyad in the region z<O:I
I d2  + a aoo - (z-z')dz 2

dzP b _ + a a a/(k 2K ) J6(z-z )

dz apo

2-21



I
Report 9316i

I (A-5)

d a a o2Ko d 6(z-z')
d - bz + a a = - [ip/(k 2 K ____ + [ib/p]5(z-z')
d -- d z -p 0 0 Z+

I , da z
az = tip/al _dp (A-6)

Zf~ dz

a =z ( ip/a dap - 5(z-z')/a (A-7)

where

a(z) = k° K0 (z)- p2  (A-8)

2 dKo

b(z) = p -- (aK o0  (A-9)
dz

Continuity of the tangential components of the electric and magnetic fields

at each point of discontinuity of K O (say, at z=-d) requires that the com-

ponents of the Green's dyad satisfy the conditions.

i 1 -d+o

i I o =0 (A-1Oa)

d__j -d+o =0 (A-lOb)

2dz -d-oI
i j-d+o

appIdo =0 (A-lla)

(K /a) pp =0 (A-11b)
0 d -d-o

2-22
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I
II

ap =0 Al2a)
-d-o

I da -~

(Ko/a) pz =-d-o --0 (A-12b)
dz -d-o

These continuity conditions also hold atz=0 where Ko(+O)=l. These

represent the boundary conditions at z= 0. There is also a condition that

the components of the Green's dyad behave as outgoing waves as z -

1 It was shown in [3] that it is very convenient to work with the

Riccati equation equivalents of (A-3)-(A-7) if the additional assumption

(which is not a practical restriction) is made that K approaches a con-0

stant as z-w- -. In this case, one may define functionsck(z) by the

equationsI
da(O.6 = a ,a4 (A-13)

dz

where . is used for z>z' and a_ is closed for z<z'. The boundary condi-

tion at z'=0 and the outgoing wave condition as z--- implyI
a (0) IP2 (A-14)

Substituting (A-13) into (A-3) (for zoz'} snows thatI
+k  2 (A-16)~+a± +a=O

Idz

2-233
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where (from A-10b)

IICY4rI =0 (A-17)

at a point of discontinuity of the dielectric constant at z= -d. Inte-

3 grating (A-13) and noting the delta function in (A-3) shows that

exp a (z")dz" / (z')-%(z') if z>z'z I +

3 ~ =(A-18)

exp a(z")dz ( z')-a(z') if zz'
11 z 14 VJ

For some purposes, it is convenient to transform (A-18) by means of the
IT T
reciprocity relation r (r r')= (r, E)(where means transpose). This

implies that an alternate expression for a +is

exp[ - (. _..,,(z)dz] [o_(,_Ct+ (z)] if .>z (A-19)

3exp[ Ja (z1'wdzt]/[ )a (z~ ] if z<z'

U In a similar fashion, functions ± (z) may be introduced by the

3 equations

dapp (A-20)
dz~ d app

2dz

32-24
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I
* These satisfy

I dz+ + bP_ + a = 0 (A-21)

d where

=0 ia0/K 0V~ (A-22)I
I _P- = (A-23)

3 The continuity conditions for app lead to the conditions

(K /a)p±I =0 (A-24)0 1-do

I forP3*at a point of discontinuity of the dielectric constant. In terms of

i., app is given by

a(z )[k 2K0 (Z') eY.IJ P3 +(z")dz /[P (z ')-(z >Z'

ap, ~z : k2 K ex zi'.3 (z"dz-(A25)

a(z'):c20 (z') exp H 3-(z"l)dz]/(Z')-+(Z')] if Z<Z'

As in the case for a,, the reciprocity relation leads to the alternate

* representation

i a(z)[ko2 o(Z)lexp[-;J P_(z")dz"]/[P(z)-P+(z)] if z>z'

app (A-26)

a(z) ko2Ko(Z) lexp[ J:+(z"dz"l/[P+zr-+(z] if z<z'

2-25
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The component apz of the Green's dyad satisfies the same equation as

app for z~z'. Hence, the functions P may be used to describe app. How-

ever, the delta function and its derivative in (A-5) result in the equation

-[ipP_(z-)/a(z-)] app if z>z-

apz = (A-27)

-lip p+(z')/a(z') app if z<z'

Thus, apz is discontinuous at z=z.

I
Since app and apz are described by the functions p , equations

(A-6)and (A-7)show that azp and azz are also described byP±. Thus

I ipp (z)/a(z)]I app if ZZ

a -(A-28)
zP ipp_ (z)/a(z)] ap if z<z'

i Like apz, this is also discontinuous at z=z'. Finally

I
ipP+(z)/a(z)] apa if z>z'

la - r(A-29)
zz [ipP- (z)/a(z)] apz if z<z(

I
For problems where integrals arise over an interval containing the point

I z-z', an additional delta function contribution must be added to (A-29).

This arises from the explicit delta function shown in (A-7) as well as the

fact, evident from (A-5), that _PZ has a delta function part. The total
dz

term to be added to (A-29) is -Ll/(k2 K )] 6(z-z-).
0 0

2-26
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I

It is of some interest to note the asymptotic behavior of the com-

ponentsof the Green's dyad as the parameter p -* . A knowledge of this

behavior is required in connection with integrations over intervals con-

taining the point z=z'. We are particularly concerned with the behavior of

i terms which will lead to non-zero results for the integrals discussed in

Section III. Notice that (A-8) and (A-9) show that

a(z) P P 2  (A-30)

dK
b(z) 0 - z° / K (A-31)

i Consideringol first, it is seen that the boundary conditions (A-14) and

A-15) reduce to

a 4(0) - - p (A-32)

i (- 0)P (A-33)I
Thus (A-16) yieldsI

i :k (z)+P (A-34)

I

i 2-27
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I
independent of z so that (A-14) yields

I abo - [l/(2p)]-3xp [-plz-z'l] (A-35)

For (A-22) yields

IO) -P (A-36)

I and (A-21) yields

I -( z) - p (A-37)

On the other hand, (A-22) does not lead to P+(O) -.- p. However, as a

function of z, the solution of (A-21) rapidly approaches

+(z) -* - P (A-38)

with the thickness of the transition zone approaching zero as P . With

these results, (A-29) yieldsI
a -,-[ p/(2k 2 K (z')) exp [-p lz-z'lj (A-39)

3 These results immediately imply

apz- -lip sgn(z-z')/(2k 2 K 0(z) exp -Iz-zf II (A-40)
0 o

and azp. -  - i p sgn(z-z')/(2k 2 K.(z ))] exp [- pIz-z'l ] (A-41)

2-28I
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I
where sgn(z-z- ) is the sign of z-z-. Since the asymptotic forms of apz

and a simply change sign at z=z, integration in a small symmetrically

placed interval containing this point will lead to zero. Of course, if

Iz-2-1 is not small, large values of p imply that integrals containing apz

and a z will approach zero because of the exponential factors. Finally,

a - [P/(2 k 2 K (z') exp --p I(z-z- ] 5 <z-zI)/(k 2 K (z'))
0 0 0 0

(A-42)

I

I
Ui

I
.. ...I.saa l illani
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APPENDIX B ANALYSIS OF EXPLICIT DELTA

FUNCTION PARTS IN KERNELI
According to Appendix A, those parts of the integrals of eqs.

(36) and (38) involving azz contain an explicit term with a delta function.

In fact, Appendix A gives

a (z,z)= a Cl-(z-z Vk 2K ) (B-I)
zz 1  zz 0 0

where a is a function in the classical sense containing no delta functions

and is given by eq. (A-29).

Using (B-l) allows b zz( eq (36)) to be written as

1 f0 )I cl cl,
b (ir W(u;z !a (Z )ac (Z +U)zz = (2T) Re jdpjdu W( l zzl zz Z

cl2 cl2

-a c(z.)(z-zl-u)/[k K *(z)]-a *(Z +u)6(z-z )/(k K (z)]

Kz 1*(0z)1.. 00

+S(z-z 1 )6( "Zr U)/ k 4IKOZO

ci (B-2)

...b -(71 co '(erd1z~ cl (b b-(21r)-Re dpjW W -l zz:(z)/[ko2 K0 *(Z)]+ du W'(Iul;z)

ci 2 ] ( ' /[ 4  2

a (~)(-,/kK 21(-l~loz)[oj
ZZ 0 0 0)

ll l

where b is given by (36) with a replaced by a c l and, in the second equa-
z2 zz zz

3 tion of (B-2), the approximation W'(lZ-z1 1 :zj)=W'(jz-z1I;z) is used. When

(8-2) is used in the expression for E 33(see(34) , an intergration over z,

is performed. We consider the contribution to this integral from the sepa-

rated delta function parts of a z. Thus

3 2-30
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I

I= 2 jdz l [b -b ] < EE*> (z)
zz zz 331T7 0W# cl 2K >()

-Re rCOdp dzW, z-zl ;z a Cl(z )<EE*> (z )/(k 2 K z

TT "'- d 1 1 33(z)0)

(B-3)

+{0duW'(luI;z)a cl(z+u)<EE*> (z)/(k 2K (z)]
jMzz 33 00

- W'(O~z)<EE*> 3 3 (z)/[k 
4 JK(z)I])2

In the first term of (B-3), the argument of <EE*>3 may be replaced by z
33

because of the sharply peaked behavior of W'. Further, except for z within

a few correlation lengths of the surface z=0, the upper limit of the first

integral within the curly brackets may be replaced by o and the variable of

integration changed to u= z-zI. Then, making use of the fact that <EE*>33

is real,

I = d zz<EE*>33(Z) (B-4)

i and

nd 2f dz,bz <EE* >3 z )= 2j dZlbz <EE*> (zI ) - d <EE*> (z) (B-5)
lz3(1zz 33 1 zz 33

-:0 CO

where the multiplying factor d is given by

zz 0 0 z zz 0

3 -W,(O;z)/(k0 
2 K 0 () 2 ) (B-6)

I A similar treatment of a in (39) shows that the first term in the

last equation of the set (34) may be written asI °  ro cl
tdz D <EE*> (zl)= _ dz D1 <EE*> (z ) - d1<EE*>3 (Z )  (B-7)

Lo13 13 1 j 1 13 13 1 d13*> () B7I c ishesmasD3z

where D is the same as D except that all terms containing a are
13 13 zci

replaced by a 
.
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The multiplying factor d in (B-7) is

ork *(z) )pdpj du W'(Iu!;Z) (B-8)

{ 2(app (z+u)+a( z+u)J+ a , (z-u)+ao(z-u),

I2

I
I
I
II
I
I
I
I
I
I
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3 APPENDIX C INTEGRALS FOR LARGE PARAMETER P

When eqs (35) - (39) are substituted into (34) and use is made of

(40), it is seen that integrals of the form

0dz0dp 0 du= 3 dzlj Ddo0 du +{ dz f odo du (C-1)
1 - - 1 c z

arise. The asymptotic forms for the compohents of the Green's dyad given

* in Appendix A may be used as an approximation for all of the a's shown in

(36) - (39) if P> . When this is done, all integrands contain a factor of

* the form

a(z,z +u)( exp[-Piz-z -Ul] (C-2)

I where the subscripts on the a have been omitted and, in contrast to eqs

(34)-(39), the first argument, z, has been included because of its role in

the following analysis.

Consider the first term in (C-l) where z>z I. Eq (C-2) and the results

of Appendix A show that

a(z,z +u)= a(z,z1)exp(pu) (C-3)

provided that the approximation K (z l+U)=Ko (z ) is used whenever necessary.

For large p, a(z,z ) is a sharply peaked function of I z-z 1 . Thus, more

slowly varying functions of zI may be removed from the integrand when per-

3 forming integrals over z1. Then, denoting any pair of a's that occur in the

integrands by a1 and a2 , we find

I dz pd )a (zz )F(P0z),Pl p F(p,z)Jdzla1 (Zzl)a2*(zz 1 )

I (C-4)

I
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where F(p,z I ) depends on the integral over u of W' exp(pu) and the components

of <EE*>

On the other hand, for z<z, W'(lul;z ) has a sharp peak at u=Q

while exp[-plz-z l-ul] has a sharp peak at u= z-zI. Therefore, over most of

the range (z,O) where z 1z, we are dealing with the product of two sharply

peaked functions whose peaks are separated. Hence, the contribution of the

second term in (C-1) is negligible compared to the first.

Thus, the integrals in (34) for which p>P, may be approximated as

dzI dldu W'(lul;zl)al(zZl)a 2*(z,z +u)<EE*>(z )

(C-5)

=[ p[du w' (ul ;z)e Pu]fjdZlal ( z,z l ) a 2 * ( z ,z ] <EE* > ( z )

in particular, using the asymptotic resutls in Appendix A, we find the

following for integrals over the range (--,z):

I ~ ~ ~ d~a0(' 1:11 (z~z )=J l cl( )c* 1 ,pj Z 2

1 CO
_d za 1 -z0 zz zz 0

dzlapp(z,z1 ) zz (C-6)

fzz

dz app(zz )al* 1/[8ko2K*(Z)p

_dZla4 z,Zl)acz(Z,Z ) I S z, z* (Z Zl)a (z z

dz~~~ afZz) *zz) dz a ( z,z )a *(z,z )0
z1 aPz z 1 aP~Z 1 z, 1.I cl

In (C-6), a is the part of a which does not contain an explicit delta
zz zz

3 function (see Appendix B).
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APPENDIX D EXPLICIT INTEGRALS FOR EXPONENTIAL

CORRELATION FUNCTIONI
3 In this appendix, the completion of the evaluation of the integrals

shown in (C-5) will be made assuming that the function w" is given by (43)

and (44). The integral over u in (C-5) is elementary and results in

f du W' ePu = [2Tr(1 2 )/2I P3{[p+P]-l+p[p4P] - 2} (D-1)

3Substituting (D-1) in (C-5) and noting that (C-6) will introduce various powers

of p according to which a's occur, we find that three kinds of integrals arise:

2 p2F 1 ( U)
p 2 P - [p+ p]- + p p+ -PI IF 2 0p )  (D-2)

P fP-2IF3U
Pl F 3 (2p)

where, upon using the substitution x = p in the left hand side of (D-2), it

I is found that

12 -3/2 2 1/2 -.
(X) x [+x 2 ] [l+x2

2 f d x -2) (D-3)

I 1 + (l+x 2 )1/2 +x2 1/2 x 1-1}

3Although, it does not appear possible to express the integrals in (D-3)

exactly in terms of elementary functions, numerically satisfactory approxima-

3tions are not difficult to obtain. First, we consider limiting behavior. For

large X, all of the roots in (D-3) may be expanded in powers of I/x . This

leads to
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i 1I(X) = 1/(4X 3 )  1/(4X 5 ) +..

F 2() = 3/(4X) 5/1X 3 . (D-4)

I 3 (X) = 3/(20X ) - 5/(28X) +...

For small X, it is found that

FXW = 1- 2X + 32. +
1 2(X) = 2 - 23 + + ... (-5

F (X)  = 2 3 3 42 3 ' + VX +.. D5

F3 (X) = 2/X + 3 gn X + ...

Using (D-4) and (D-5) as guides for developing functional forms, a numerical

calculation of a rational Chelbychev fit yielded

F1 (X) = (.83448 - .71644X + .21851 X
2 ) / (.83473 + .93764X + X

2)

F 2(X) = 2 X 3 (.87871 - .58270X + .15574X
2 ) /(1.31823 + .59901X +X

2)

F 3(X) = 2/X+ 32nX - (3.1544 + .6467X + 5.0162X2 ) /(2.9216 + .6307X +X 2

(D-6)

for X < 1 while

F 1(X) = (.25003 X2 - 1.375 x 10-2 /[X 3 (X+2 .94783)]

F2 (X) = (.74972 X + .13296)/ [X (X2 + .72405)] (D-7)

D3(x) = (.15010 - .01927)/ x (x2 + 1.07866)]

for X > 1.

Comparison of numerical results from (D-6) and (D-7) with high preci-

sion numerical evaluation of (D-3) showed that the rational approximations to

Fir F2, F3 have maximum errors of .06%, .03%, and .06%, respectively.

The integrals in (C-5) are completely specified by F1 , F2 , F3 and the

various numerical factors shown in (D-1), (D-2), and (C-6).
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